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Dynamo action associated with the motion generated by a random body force 
f(x, t )  in a conducting fluid rotating with uniform angular velocity i2 is considered. 
It is supposed that, in the Fourier decomposition off, only waves having a phase 
velocity V satisfying V . i2 > 0 are present and that the Fourier amplitudes of f 
are isotropically distributed. The resulting velocity field then lacks reflexional 
symmetry, and energy is transferred to a magnetic field h,(x,t) provided the 
scale L of h, is sufficiently large. Attention is focused on a particular distribution 
of h,(x,t) (a circularly polarized wave) for which this dynamo action is most 
efficient. Under these conditions, the mean stresses acting on the fluid are 
irrotational and no mean flow develops. It is supposed that 

h < LIZ2, h Q h,Z and v/h = O(1) or smaller, 

where Z (< L) is the scale of the f-field, and v and h are the kinematic viscosity 
and magnetic diffusivity of the fluid. The response to f is then dominated by 
resonant contributions near the natural frequencies of the free undamped 
system. As h, grows in strength, these frequencies change, and the dynamo 
process is rendered less efficient. Ultimately the magnetic energy M (and also 
the kinetic energy E )  asymptote to steady values. Expressions for these values 
are obtained for the particular situation when v < A and when the frequency w, 
characteristic of the f-field is small compared with other relevant frequencies, 
notably SZ and ho/Z; under these conditions, it is shown that 

where C is a number of order unity determined by the spectral properties of the 
f -field. The implications for the terrestrial dynamo are discussed. 

1. Introduction 
In two previous papers (Moffatt 1970a, b, hereafter referred to as I, 11) a theory 

of dynamo action due to a random velocity field has been developed. The theory 
is based on a double-scaIe anaIysis in which attention is concentrated on the 
development of the magnetic field on a scale L much greater than the scale 1 of 
the velocity fluctuations. I n  this respect, the theory follows the approach de- 
veloped by Steenbeck, Krause & Radler (1966), Steenbeck & Krause (1967a, b)  
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and Radler (1968)t. Parallel developments have been reported by Parker (1970, 
1971u-d); and related studies of periodic dynamos have been presented by 
Childress (1970) and G. 0. Roberts (1970). Further references are given in a recent 
review of the subject by P.H.Roberts (1971). 

I n  paper I, the basic conditions for dynamo action were derived, and in 
particular it was shown that, when the velocity field is weak, dynamo action will 
certainly occur provided the statistical properties of the velocity field lack re- 
flexional symmetry. I n  paper I1 it was shown that this condition can be satisfied 
by a random superposition of inertial waves in a rotating fluid; and a detailed 
investigation of the back reaction of the growing Lorentz force on the fluid motion 
was carried out. It was shown that, as might be expected from general energy prin- 
ciples, the effect of the Lorentz force is to limit the growth of magnetic energy 
density M .  I n  the (assumed) absence of any driving mechanism, M increases 
to a maximum value small compared with the initial kinetic energy density E, 
of the fluid motion, and ultimately decays to zero as a result of ohmic dissipation. 

It is clear that if there is to be a steady (or statistically steady) dynamo, then 
there must be some sustained source of energy for the fluid motion to compensate 
for ohmic (and possibly viscous) dissipation. The purpose of this paper is to 
show that, if a random driving force f(x,t) is introduced into the equation of 
motion, conditions being otherwise as in paper 11, then, provided the length 
scale L available for the growth of large-scale field fluctuations is sufficiently 
large, the increase in M continues until M is much greater than the kinetic 
energy density E and that, in general, a steady state with M 9 E is established. 
This result is grossly insensitive to the statistical properties of the field f(x, t). 
It does, however, depend upon the assumption that no mean velocity is generated 
in the fluid; it will turn out in retrospect (see $ 7 )  that this assumption is self- 
consistent in a fluid of infinite extent provided the spectrum tensor off is axisym- 
metric about the direction of a. I n  the presence of fluid boundaries a mean flow 
will almost certainly develop, and theory will require appropriate modification.$ 

The general ideas behind the development can be very simply explained. The 
equation for the evolution of the large-scale magnetic field B, = (pp)* h, is (in 
the absence of any mean velocity) 

ah& = V A (u A h) + AV2h,, (1.1) 

where u and h are the velocity and magnetic field fluctuations on the scale I ,  
and the angular brackets represent an average over scales large compared with 
I but small compared with L, or equivalently, an average over an ensemble of 
realizations of the f-field; h is the magnetic diffusivity of the fluid and p and p 
are the magnetic permeability and density, assumed uniform. I n  both papers I 
and 11, we derived an expression for (u A h) in the form 

(u A h) = h-lAijhOj, (1.2) 

7 These papers are now available in English (Roberts & Stix 1971). 
$ The method of invoking a random body force is advocated in J 5 of the review article 

by P. H. Roberts (1971), and an interesting discussion is presented of possible back- 
reaction effects of the type examined in this paper. A simplified treatment of the problem 
has been presented by Moffatt (1972). 
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where Aii is a real symmetric tensor determined (in principle) by the statistical 
properties of the velocity field, which are of course governed by the equation of 
motion, and are therefore influenced both by the rotation vector D (via the 
Coriolis force) and by the local magnetic field h, (via the Lorentz force). When 
the Lorentz force is very weak, A,i is independent of h,, and substitution of 
(1.2) into (1.1) gives a linear equation for h, with constant coefficients. It was 
shown in I that equation (1.1) in general admits exponentially growing modes; 
and in I1 that, if D = (0, 0, Q), the mode of maximum growth rate is a circularly 
polarized wave of the form 

(1.3) 

(1.4) 

h, = h,(t) (cos Kz, -sin Kz, 0), 

where, during the 'linear phase', 

h,(t) = h,, emt, m = - hK2 + a1 K/h, a, = hi2 A ,  hOi h,, ; 
a1 is a function of the dimensionless number Q = nP/h. The mode of maximum 
growth rate is that for which 

K = a,/2h2, m = a!/4h3, (1.5) 
but in fact all modes of the form (1.3) are unstable if K < al/h2. Important 
properties of the field (1.3), which persist through the subsequent nonlinear 
development, are that 

V A h, = Kh,, Vhi = 0, h,.Q = 0. (1.6) 

As the field (1.3) grows in strength, its influence on the inertial waves becomes 
important, and Aii will begin to depend on h, as well as on Q; equation (1.1) then 
becomes nonlinear, and the exponential growth of h, begins to level off. If there 
is no source of energy (as in 11), then M ( t )  = &@reaches a maximum, as mentioned 
above, and then falls to zero (ultimately as t-l). However, if a statistically steady 
source of energy is present (through random body forces) then it is to be expected 
that M ( t )  may attain a steady level; the level that it does attain is of course of 
crucial interest. 

When h,.D = 0, and when the spectrum of f is axisymmetric about the 
direction of 8, symmetry conditions ensure that one of the principal axes of 
Aii is in the direction of the vector 8 A h,, and the other two lie in the plane 
determined by 8 and h,; hence we may write 

Hence, from (14,  A(u A h) = alho + vl(ho/Q) 8. (1.8) 

It turns out that the coefficients a,, Bl, y1 and cSl depend only on the magnitude 
of h, (and not on its direction in the plane perpendicular to a), and so, if attention 
is restricted to the single mode of maximum initial growth rate with the properties 
(1.6), then Val = Vy, = 0. From (1,8), we then have 

V A (u ~ h )  = h-la,V ~h,, (1.9) 
t The term involving ql was unjustifiably omitted in 11; but it is apparent from (1.9) that  

this omission was inconsequential as far as subsequent developments in I1 were concerned. 
25-2 
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just as for the linear development phase, but a, is now a function of M = Bh8 
(as well as of other parameters not involving h,).? Equation (1.1) then still 
admits a solution of the form (1.3), and the equation for M(t )  becomes 

(1.10) 

It is to be expected that a,(&!) will be a decreasing function of M ,  and that 
the ultimate steady level of M ,  given by solving 

a,(&!) = hZK, ( i . 11 )  

will therefore be an increasing function of L = K-l. The principal aim of this 
paper is to determine a,(M), and hence to derive the asymptotic ratio of magnetic 
to kinetic energy. 

The analysis of $5 2-5 is directed towards obtaining and simplifying expressions 
for a, and for the kinetic energy density E in terms of the statistical properties 
of the force field, the rotation vector S, the local field strength h,, and the 
physical properties of the fluid. In  the course of the simplification process, we 
make various assumptions which are collected together at  the end of $5. The 
simplified expressions for a1 and E will be found in equations (5.9) and (5.10); 
in these formulae, F, = (f2>, oo is a characteristic frequency and h0(= I- , )  a 
characteristic wavenumber in the spectrum off.  The simple conclusions of $6  
are based on these formulae alone, together with the ideas of this introductory 
section. The large-scale force balance is considered in $7,  and the geophysical 
implications of the results in $ 8. 

2. Forced waves in a rotating fluid permeated by a uniform field 
Consider a fluid of i nh i t e  extent, of magnetic diffusivity h and kinematic 

viscosity v, rotating with uniform angular velocity 51, and permeated by a 
magnetic field h, (which may for the moment be regarded as uniform). We shall 
later restrict attention to the situation h,. 51 = 0 favoured by the dynamo pro- 
cess described in $1, but the analysis of $$ 2 and 3 is valid for arbitrary orientation 
of h, relative to 51. We suppose that the fluid is subjected to a body force dis- 
tribution which is a stationary random function of x and of t .  Let F, = (f2>, 

and let I be a length-scale over which f varies significantly. We shall suppose that 
the dissipation in the system is weak; more precisely, we suppose that 

v/h = O(l) ,  Q Q12/h 9 1, J h,Z/h 9 i. (2.1) 
We make no assumption concerning the magnitude of the ratio 

J / Q  = h,/QZ. 
The conditions (2.1) imply that free waves are weakly damped over a wavelength, 
and that the dispersion relation for these free waves is strongly anisotropic. 
We shall suppose further that the velocity field u(x,t) that is generated, with 
r.m.s. value u,, satisfies R, = u,/Ql g 1. (2.3) 

f In paper 11, ocl turned out t o  be a function of the particular dimensionless combination 
S = ZtM(t)/h. 
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This implies a restriction on F, which will be derived in retrospect (equation (6.6) 
below). 

The condition (2.3) allows us to use the following linearized equations for the 
forced waves : aU/at+2fiAU = -VX+ho.Vh+VV2U+f, (2.4) 

(2.5) 

(2.6) 

aqat  = b. vu + A m ,  

V.U = V . h  = 0, 

where px is the sum of fluid pressure and magnetic pressure. We may suppose that 
any non-solenoidal part off is absorbed in x, so that 

V. f  = G .  (2.7) 

The general Fourier decomposition of f(x, t )  can be expressed in the form 

f(x, t)  = h j o m d w ( A + ( k ,  w )  cos (k. x - wt) + A-(k, w )  cos (k . x + ot) 
+B+(k,o)sin(k.x-ot)+B-(k,o)sin(k.x+wt)), (2.8) 

where the k-integration is over the half-space k.Q 2 0. We know that we can 
expect dynamo action only if there is a basic asymmetry in the statistics of 
the f-field about planes perpendicular to &2, implying a lack of reflexional sym- 
metry in the externally imposed conditions. In  order to maximize this asym- 
metry (and at the same time to achieve a slight simplification in the analysis) 
we shall assume that 

so that the waves generated by the forcing field all have a phase velocity V 
( =  wk/k2) satisfying V . Q  > 0. Equation (2.8) may then be written 

A-(k, W )  = 0, B-(k, w )  = 0, (2.9) 

(2.10) 

where f(k, w )  = A+ - iB+. The fields u, h and x then admit a similar Fourier 
decomposition, and equations (2.4)-(2.7) become 

- io6 + .2Q A 6 = - ikg + iho,h - vk25 + I, 
- iwii = ihO,ti - hk%, 

(2.11) 

(2.12) 

k.8 = k . h  = k.I= 0, (2.13) 

where h,, = h,.k. From (2.12), 

ii = - hOk(W + ihk2)-16, (2.14) 

and manipulation of (2.11) and (2.13) then leads to 
8 = D-l[2(k. a) k A I - iak2f], (2.15) 

(2.16) 

For small A, and v/h = O( 1), the expressions for v and D may be expanded in 
where D = k2a2 - 4(k.  a)', = - (W + i ~ k 2 )  + (W + ihk2)-l h&. 

power series: 
00 co 

a(k, W ,  A )  = C (iA)"g,(k, w ) ,  D(k, W ,  A)  = (ih)"Dn(k, o), (2.17) 
n=O n-0 



390 H .  K .  Moffatt 

the coefficients cr, and D, being real. Clearly 

Do(k,w) = k2 w - G  2-4(k.8)2,  D,(k,w) = 2k4(o-%)@+i) .  (2.18) ( w )  

When the dissipation is weak, the response to the driving force is, as in any 
weakly damped linear system, most pronounced when w is near to one of the 
natural frequencies, w, say, of the undamped system, determined by 

Do(k,wc) = 0. 

The two positive roots of (2.19) are 

(2.19) 

w, = ( - 1 ) C ~ c o s e + ( Q ~ C 0 s ~ e + h ~ , ) ~  (c = 1,2),  (2.20) 

w,-h&/w, = (- l ) C 2 Q C O S 8 .  (2.21) 

where 0 is the angle between 8 and k (0 < 8 < &-). These satisfy 

The relations (2.20) can be regarded as defining two three-dimensional manifolds 
dl and d2 in the four-dimensional space of the variables (k, w ) .  It may happen 
that the spectrum off is confined to a region 9 of this space that does not intersect 
either dl or d2, in which case there is no possibility of a resonant response to 
the forcing field. We shall suppose in what follows that there is a real intersection 
of 9 with a t  least one of the resonant manifolds dl and A2 and that the response 
is dominated by contributions from this intersection. 

It may be noted that the free mode associated with the frequency w1 has 
positive helicity (i.e. (ik A ti) .ii* > 0, see 11) and that with w2 has negative 
helicity; a net helicity is in general generated because the spectral responses 
determined by (2.15) are in general unequal at  these two frequencies. 

3. Evaluation of the kinetic energy density and the mean electromotive 
force 

We may reasonably assume that the forcing field f(x, t )  does not exhibit any 
intrinsic helicity (so that any lack of reflexional symmetry arises solely through 
the interaction of the f-field and the rotation 8); to be precise, we assume that 
the helicity spectrum off is identically zero, i.e. that 

(3.1) ((ik A 3) .  f*) = 0. 

(Ik A fI2) = kZ(\f12) = (277)-1P(k,w), say, 

Moreover, since k.f = 0,  it is clear that 

(3.2) 

and, from (2.14) and (2.15), after some reduction, 
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Note that this latter expression vanishes if either h or GI vanishes; both dissipa- 
tion and rotation are essential for the production of the key quantity (u A h). 
Note also that, when h, is weak, ID12 a n d B g  become independent of h,, and 
the expression (3.4) is then linear in h,; but when h, is strong, the dependence of 
these quantities (particularly of \Ill2) on h, can obviously cause strong departures 
from linearity. 

In  order to obtain expressions for (u2) and (u A h) we have to integrate (3.3) 
and (3.4) first over o, then over k .  Under the assumptions of $2,  these integrals 
will be dominated by contributions from neighbourhoods of the resonant mani- 
folds where w is given by (2.20), and where 1D1-2 is sharply peaked. We may 
reasonably assume that 

so that there is no danger of an important contribution (in the limit h .+ 0) 
from the neighbourhood of w = 0. 

P(k,w) = O(w2) as w -+ 0, (3.5) 

Now from (2.17), 
I 012 = 0; + P(D; - 20 ,  0,) + 0 ( ~ 4 ) ,  (3.6) 

so that, near either root w, of (2.19), 

and D1, = D,(k,w,) = (- 1)C4k4Qc~s8 (3.9) 

v p  = 0(1), 
Hence, standard asymptotic analysis (appendix A)? gives, for h-+ 0 and 

n 

and {u A h)i = 492 J (ti A h*){ d3k dw = h-lAij k,, (3.11) 

(3.12) 

The factor - (- l)c appears in (3.12) because when h -+ 0, and w = w,, 

92fT N -(-1)C2S2cos8. (3.13) 

4. Further reduction of the expressions for E and (u A h) 
The integrals (3.10) and (3.12) are extremely complicated, and it seems 

desirable to introduce further simplifying assumptions to permit further reduc- 
tion. To this end, we assume 

u < A, h,.Q = 0, P(k,w) = P ( k , w ) .  (4.1) 
t An alternative procedure which leads to the same results (3.10)-(3.12) is to evaluate 

the residues at the relevant poles of the integrand in the complex-oplane, where D(k,o) = 0, 
and to use contour integration. 
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Of these assumptions, the first is not unduly restrictive, and is very likely to  
be satisfied in the geophysical context. The second is justifiable on the grounds 
that the magnetic mode of maximum initial growth rate satisfies this condition, 
and the situation with h, perpendicular to 8 is therefore of particular interest. 
The third means that we assume that the Fourier amplitudes of the f-field are 
isotropically distributed over the available directions k .51 > 0. 

Considering first the expression (3. lo), it is evident that the dominant con- 
tribution to the integral, under the condition v <  A,  comes from the region of k 
space where h,, = h, . k < 0. Physically, the reason is that wave modes for which 
h,, = 0 do not bend the magnetic field lines and therefore do not experience 
ohmic damping; their amplitudes are limited only by viscosity, and when v < A ,  
these modes make the largest contribution to {u2); mathematically t'he integrand 
is singular on h,, = 0 when v/A --f 0. 

The plane h,, = 0 intersects the manifolds ..k; and d2 where 

w1 = 0 and w2 = 2Q cos8. (4.2) 

Hence there is no contribution to the expression (3.10) from the term c = 1, 
and there is a contribution from the term c = 2 only if (as will be supposed) 

P ( k , w )  + 0 for w 6 2Q. (4.3) 

With h,, NN 0, (3.10) then becomes 

It will be convenient to introduce polar angles (8,$) relative to the direction 
of 8, and (el, 9') relative to the direction of h,, so that, with 8. h, = 0, 

8 . k  = Qkcos8 = QksinO'cos$', 

h,.k = h,kcosO' = h,ksinOcos$. 

(4.5) 

(4.6) 

Since we are concerned only with the half-space S 2 .  k 2 0, the relevant range of 

On the plane h,, = 0,  0' = *T, and 8 = [$'I, so that w2 = 2Qcos$'. Putting 
hgk = hgk2 cos2 8' and d3k = k2 sin 6' dk d8' a$', we can integrate (4.4) with respect 
to 8'; replacing the variable $' by w2 (and dropping the suffix 2), we then have, 

The integrand has an integrable singularity at the upper limit w = 2Q. Note (i) the 
appearance of the (large) factor u-4 which has its origin in the physical process 
described above, and (ii) the very simple relation E cc hi1, which is plausible 
in that, for given P(k,  w ) ,  as h, increases there is a corresponding increase in the 
resistance to excitation of those Fourier components of the velocity field that 
bend magnetic field lines. 
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(4 
FIG- 1. The range of integration for the integrals defining Gf,(p, q )  (c = 1,Z). The 
appropriate interval of the p axis is indicated by the thick line. (a) c = 1, q < 1 ; (b)  c = 2, 
p < 1, q 2  > 1;  (c) c = 2, p > 1, qa  > 1. 

Turning now to the expression (3.11) for (u A h) in terms of the tensor A,j 
given (for small A )  by (3.12), and noting that, for the reasons put forward in 1, 
when h,. S2 = 0, we need only evaluate the scalar 

a1 = h2A,jh,,h,j, 
we have, from (3.12), 

(4.9) 

(4.10) 

This quantity, unlike a general component of Aij,  and unlike (u2), remains 
finite in the limit v/h -+ 0, and we may simply put v = 0 in the integrand, i.e. 

and in this expression w,(k, O , $ )  is given by (2.19), with hOk = h,ksinOcos$. If 
we change variables from (k, 8,~)) to (k ,p ,  w,) where p = cos 8, this expression 
may be reduced (appendix B) to the form 

with (4.13) 

where the upper and lower signs correspond here and subsequently to c = 1 ,2  
respectively, and where the range of integration in (4.13) is the subinterval of 
[0, 11 in which both factors in the integrand are real (see figure 1). (For given 



394 H .  K .  Mofflxtt 

k and w,, the range of values of p on the resonant manifolds dc is correspondingly 
restricted by hik < hik2sin28.) The integrals (4.13) may be expressed in terms 
of incomplete elliptic integrals of the first kind. 

The expression (4.12) is the difference of two integrals, each of which, like 
(4.8), is a weighted integral over the spectrum function F ( k ,  w ) .  It is evident 
from (4.11) that the two contributions to a, corresponding to c = 1 ,2  have 
opposite signs, consistent with the observation in the last paragraph of 9 2, but 
since GI@, q)  =k G2(p, q) they are of unequal magnitude for general P(k, w ) .  

5. Simplification of the expression for a, for small excitation fre- 
quencies 

The expression (4.12) can be simplified further if we assume (consistent with 
(4.3)) that the spectrum function P(k,  w )  is localized in (k, w )  space around a 
characteristic wavenumber k, ( = S-l) and a characteristic frequency wo satisfying 

wo < i2 and wo < hoke, (5.1) 

i.e. we assume that typical frequencies in the forcing field are small compared 
with Q, and typical phase velocities are small compared with the local Alfven 
velocity. It is also helpful to assume, consistent with (5.1), that 

wo < hikt /Q.  (5.2) 

Then the dominant contribution to the integral (4.12) cames from the region 
where p = 2Q/w, B 1 and q = wc/hok < 1 and we can replace the functions 
Gc(p, q )  in (4.12) by the limiting form as p -+ co of the functions 

where (appendix B) ,ul = 1 and ,u2 = p-l. As p + co, 

SAP) C I P - t ,  92(P) = O(P-% (5.4) 

where c, = 2.55 ..., and so (4.12) becomes 

The corresponding expression for E ,  from (4.8) with w < !2 in the integrand, is 

The expressions (5.5) and (5.6) have a simple dimensional structure. Noting 
that F F ( k , w )  = L F ,  

ko wo 
(5.7) 

where F, is a dimensionless function of its arguments, satisfying 
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we can easily derive from (5.5) and (5.6) 

al N ahZ2iw-t(wo/8)+ F,, (5.9) 
and E N b(hv)-* Z3M-4(o,/Q) 4, (5.10) 

where Z = hi1,  M = +hi, and a and b are dimensionless constants of order unity 
defined by 

It may be helpful to collect together and classify the various assumptions 
that have been made in arriving at  the formulae (5.9) and (5.10); in effect, these 
are as follows: 

(a )  Assumptions about the spectrum function P(k, w )  of the forceJieZd f : 
(i) P = &Zw;llr,(kZ, w/o,), where Pl(& 7) is localized around E = O(l),  7 = O(1); 

(ii) w, < a; (iii) P = O ( d )  as w -+ 0; (iv) P = 0 for (k.Q)o < 0 (giving a bias 
to the characteristics of the force distribution in the direction of 8). 
(b )  Assumptions about the difiusion parameters A, v :  

(c) Assumptions about the large-scale magnetic jield : 
Z(w, In)+. 

For a field which grows from an infinitesimal level, we obviously should not use 
the formulae (5.9) and (5.10) until the inequalities (viii) and (ix) are satisfied. 

(v) h < QZZ; (vi) v < A. 

(vii) h,. 8 = 0; (viii) h, $ h/Z; (ix) h, 

6. The ultimate level of magnetic energy density 
Substitution of (5.9) in (1.10) gives 

aiw K P  w, 4 
-= a-( ) Fo-hK2H, dt MB 

with solution given by 

where No is the magnetic energy density at some instant t = 0 beyond which 
the assumptions (viii) and (ix) above are satisfied. Hence in a time of order L2/h, 
(where we take L = K-l) the magnetic field settles down to a steady level given by 

For consistency, this must also satisfy (viii) and (ix), or equivalently 

J f 1  B h3/Z3, P(w, ep, (6.4) 

and clearly these can be satisfied by (6.3) provided L is sufficiently large. 
From (6.3) and (5.10), the ratio M / E  in the ultimate steady state is given by 
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where C = a/b is a number of order unity. The large factor (SZ/w,)% will tend to 
compensate the small factor (v/h)+; a steady state for which M & E is inevitable 
if LIZ is sufficiently large. 

It is interesting to note from (5.10) and (6.3) that, in the steady state, both E 
and B are proportional to Pi. This is to be contrasted with the simple propor- 
tionality E cc Fo that arises in a completely linear system. The condition. (2.3), 
or equivalently E < S Z 2 E 2 ,  now leads to the appropriate restriction on the 
magnitude of F, (for the validity of the linearized wave treatment given in §2),  
viz. 

The inequalities (6.4) and (6.6) are compatible provided 

7. The large-scale force balance 
It has been noted in equation (1.6) that, for the mode h,(x,t) of maximum 

growth rate, to which attention has been confined, V A h, = Kh,, so that the 
associated Lorentz force vanishes; i.e. the dynamo mechanism favours the 
growth of a force-free field when this is permitted by the boundary conditions. 
We must also, however, consider the effect of the force distribution aPij/ax, 
arising from the Reynolds stress distribution (augmented by the magnetic 
effect), 

Since h, = h,(z, t ) ,  all mean quantities such asp4* depend on z and t only. More- 
over, when h,. 8 = 0, and when the spectrum tensor of f(x, t )  is axisymmetric 
about the direction of a, (so that for example (flf$) = 0) it is evident from 
perusal of the expressions for 

(GiG?), (&Ti:), (i = 1,2), (7.2) 

in terms off (via (2.14) and (2.15)) that each of (7.2) involves only terms of the 
form cos q5 or sin q5 times a function of cos2 q5, which integrate to zero over the 
range (0,2n) or q5. It follows that 

P13 = P23 = 0, (7.3) 

i.e. (0, 0 , l )  is a principal axis ofP,,, irrespective of the direction in the x, y plane 

a a a of h,. Hence 
- Pij(Z, t )  = - P&, t )  = -P3,(z, t ) .  ax, az axj (7.4) 

This force distribution is irrotational and therefore does not generate any mean 
velocity, consistent with the assumption made a t  the outset in 5 1. There is 
merely an adjustment of the mean pressure distribution. 

This convenient result arises only because we neglect the effects of fluid 
boundaries. In  a fluid of bounded extent, it is known that a force-free field without 
singularities, and without external sources, cannot exist; and it seems inevitable 
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that the Reynolds stress distribution will also in these circumstances contribute 
a rotational force. The methods of this paper can in principle be extended to 
include the effects a mean velocity distribution, but the labour involved would 
be considerable. 

8. Discussion 
Under the various assumptions summarized at the end of $5, it has been 

established that a random forcing field f (x, t )  whose Fourier amplitudes are 
isotropically distributed over the half-space k . S2 2 0 generates arandom velocity 
field, whose statistical properties lack reflexional symmetry, and which gives 
rise to dynamo action; that the energy that is pumped into the velocity field is 
systematically transferred to the magnetic field, until the Lorentz force reacts 
backupon the structure of the velocity field in such a way as to arrest this process; 
and that, if the length scale L available for the growth of large-scale magnetic 
field Fourier components of the type (1.3) is sufficiently large, then the magnetic 
energy in these components will, in the steady state that is established, greatly 
exceed the kinetic energy in the background random wave motion. Just how 
large L must be depends on the scale b and characteristic frequency w, of the 
force field; when v Q A and wo < a, M is large compared with E provided 

The applicability of these results to processes in the earth’s liquid conducting 
core must be regarded with caution for several reasons. First, as observed earlier 
the presence of a rigid boundary almost certainly implies a mean flow in the core 
irrespective of the nature of the energy source. It is widely believed that dif- 
ferential rotation is a strong ingredient of the mean flow and that this is primarily 
responsible for the generation of toroidal field from poloidal field (see, for example, 
Hide & Roberts 1961). On the other hand, it has been demonstrated by Krause & 
Steenbeck (1967) that the a-effect can definitely generate poloidal from toroidal 
field (essentially through the mechanism described by Parker 1955), and it 
seems likely that this is a key mechanism in the dynamo process for the earth’s 
field. Presumably, the earth’s toroidal field controls the level of this a-effect 
through the type of mechanism described in this paper, so that the rate of re- 
generation of poloidal field is just sufficient to compensate for ohmic dissipation. 

It is therefore relevant to enquire whether the various approximations made 
in this paper bear any relation to the conditions that exist in the earth’s core 
(as inferred from seismological, geomagnetic and other data). The condition 
v < h is almost certainly satisfied and need not concern us further. Estimates 
of other dimensional parameters (Hide & Roberts 1961) are: 

A M 3m2s-1, I w 104m, u, M 10-3ms-1, 

Q M 7 x 10-5s-1, L M 3 x 106m, ho M 0.4ms-l. 

These choices give 

Q 2 x  103, J M 103, R, x 10-5, LIZ x 300, (8.2) 
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and so the inequalities 

Q $  1, J $  1, .Ro< 1, LIZ% 1. (8.3) 

are well satisfied. With these values, Q/J = 0(1 ) ,  and the restrictions (5.1) and 
(5.2) are all equivalent, and are satisfied if the typical period of the disturbing 
forces is of the order of months or greater. In  the absence of knowledge concerning 
the precise nature of the source of energy for core motions, it  is impossible to 
given any firm estimate for wo, but the condition oo < IR would seem quite 
plausible in view of the long time scales associated with most geomagnetic 
phenomena. 

The most important assumption of this paper is that there is some selective 
mechanism present which leads to a net flux of energy parallel to $2; this is in 
effect the implication of the assumption (2.9); the weaker assumption 

{(A+(k, 0 ) ) 2 )  + ((B+(k, 0 ) ) 2 )  =i= ((A-(k, w ) ) 2 )  + ((B-(k, a))2) (8.4) 

would undoubtedly result in the same qualitative behaviour. In  the earth, it  is 
as yet by no means clear how such an energy flux may arise, but there are 
various possibilities that would seem to deserve further investigation, viz. (i) trans- 
mission of energy from incident waves from the core into the weakly conducting 
mantle; (ii) absorption of energy in the Ekman-Hartmann layer at the core- 
mantle interface; (iii) the critical-layer absorption mechanism in a sheared 
magnetic field (Acheson 1972); and (iv) the influence of gradients of mean density 
and mean turbulence intensity (Steenbeck, Krause & Radler 1966). 

I am indebted to Professor Willem Malkus and to Professor Paul Roberts for 
their interest in this work and for their most welcome and constructive criticisms. 

Appendix A. Derivation of the formulae (3.10) and (3.12) 
Let g(w) be any function, bounded and continuous in (0, a). Then the integral 

is singular when h = 0, since then IDlz = O(o - oJ2 at the points w = o, (c = 1,2) 
(equation (3.7)). As h -+ 0, the asymptotic expansion of I (h)  depends only on 
the behaviour of the integrand near these critical frequencies, and the leading 

where Dow, and D,, are as defined in (3.8) and (3.9). Hence 

and substitution of the appropriate functions g(w,) gives the formulae (3.10) and 
(3.12). 
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Appendix B. Derivation of the formula (4.12) 
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Substitution in (4.11) (with due care in the choice of signs) leads directly to 
(4.12) and (4.13). Therange ofintegration forp in (4.13) is determined from (B 1) 
by the double requirement 

1 k p p  2 0, q2(1 k W ) .  (B 3) 
The appropriate interval of the ,u axis in which both these inequalities are 
satisfied is indicated in figure 1, for c = 1,2,  and for various representative values 
of the parameters p and q. 
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